Neurotransmitter and Neuropeptide Receptors in Caenorhabditis elegans
Underlined items in this table contain links
If table does not load in browser, it can also be viewed in Google Documents


References**

A · B · C · D · E · F · G · H · I · J · K · L · M · N · O · P · Q · R · S · T · U · V · W · X · Y · Z

A

  • Aronoff R, Mellem JE, Maricq AV, Sprengel R, Seeburg PH. 2004. Neuronal toxicity in Caenorhabditis elegans from an editing site mutant in glutamate receptor channels. J Neurosci 24:8135-40. Abstract
  • B

  • Bamber BA, Beg AA, Twyman RE, Jorgensen EM. 1999. The Caenorhabditis elegans unc-49 locus encodes multiple subunits of a heteromultimeric GABA receptor. J Neurosci 19:5348-59. Abstract
  • Barrett P, Gerard NP, Gerard C. 1996. Cloning and Characterization of tkr-1, a tachykinin receptor homolog, in C. elegans. East Coast Worm Meeting. Abstract
  • Barrios A, Ghosh R, Fang C, Emmons SW and Barr MM. 2012. PDF-1 neuropeptide signaling modulates a neural circuit for mate-searching behaviorin C. elegans. Nat. Neurosci. 15:1675-1682. Article
  • Baylis HA, Matsuda K, Squire MD, Fleming JT, Harvey RJ, Darlison MG, Barnard EA, Sattelle DB . 1997. ACR-3, a Caenorhabditis elegans nicotinic acetylcholine receptor subunit. Molecular cloning and functional expression. Receptors Channels 5:149-58. Abstract
  • Beets I, Janssen T, Meelkop E, Temmerman L, Suetens N, Rademakers S, Jansen G, Schoofs L. Vasopression/oxytocin-related signaling regulates gustatory associative learning in C. elegans. Science 338:543-545. Article
  • Beg AA, Jorgensen EM. 2003. EXP-1 is an excitatory GABA-gated cation channel. Nat Neurosci 6:1145-52. Abstract
  • Bendena WG, Boudreau JR, Papanicolaou T, Maltby M, Tobe SS, Chin-Sang ID. 2008. Caenorhabditis elegans allatostatin/galanin-like receptor NPR-9 inhibits local search behavior in response to feeding cues. Proc Natl Acad Sci.105:1339-1342. Abstract
  • Bendena WG, Campbell J, Zara L, Tobe SS, Chin-Sang ID. 2012. Select neuropeptides and their G-protein coupled receptors in Caenorhabditis elegans and Drosophila melanogaster.Front. Endocrinol. 2012;3:93. doi: 10.3389/fendo.2012.00093 Article
  • Bendesky A, Tsunozaki M, Rockman MV, Kruglyak L, Bargmann CI. 2011. Catecholamine receptor polymorphisms affect decision-making in C. elegans. Nature 472:313-318. Article
  • Branicky R, Schafer WR. 2009. Tyramine: a new receptor and a new role at the synapse. Neuron 62:458-60. Abstract
  • Brockie PJ, Madsen DM, Zheng Y, Mellem J, Maricq AV. 2001. Differential expression of glutamate receptor subunits in the nervous system of Caenorhabditis elegans and their regulation by the homeodomain protein UNC-42. J Neurosci 21:1510-22. Abstract
  • Brockie PJ, Mellem JE, Hills T, Madsen DM, Maricq AV. 2001. The C. elegans glutamate receptor subunit NMR-1 is required for slow NMDA-activated currents that regulate reversal frequency during locomotion. Neuron 31:617-30. Abstract
  • Brownlee DJA, Fairweather I. 1999. Exploring the neurotransmitter labyrinth in nematodes. Trends Neurosci 22:16-24. Abstract
  • C

  • Cardoso JC, Pinto VC, Vieira FA, Clark MS, Power DM. 2006. Evolution of secretin family GPCR members in the metazoa. BMC Evol Biol 6:108. Abstract
  • Carnell L, Illi J, Hong SW, McIntire SL. 2005. The G-protein-coupled serotonin receptor SER-1 regulates egg laying and male mating behaviors in Caenorhabditis elegans. J Neurosci 25:10671-81. Abstract
  • Carre-Pierrat M, Baillie D, Johnsen R, Hyde R, Hart A, Granger L, Segalat L. 2006. Characterization of the Caenorhabditis elegans G protein-coupled serotonin receptors. Invert Neurosci 6:189-205. Abstract
  • Carvelli L, McDonald PW, Blakely RD, DeFelice LJ. 2004. Dopamine transporters depolarize neurons by a channel mechanism. Proc Natl Acad Sci U S A 101:16046-51. Abstract
  • Chalasani SH, Chronis N, Tsunozaki M, Gray JM, Ramos D, Goodman MB, Bargmann CI. 2007. Dissecting a circuit for olfactory behaviour in Caenorhabditis elegans. Nature 450:63-70. Abstract
  • Chalasani SH, Kato S, Albrecht DR, Nakagawa T, Abbott LF, Bargmann CI. 2010. Neuropeptide feedback modifies odor-evoked dynamics in Caenorhabditis elegans.olfactory neurons. Nat Neurosci 13:615-621. Abstract
  • Chase DL and Koelle MR. Biogenic amine neurotransmitters in C. elegans (2007). Wormbook, ed. The C. elegans Research Community, Wormbook, doi/10.1895/wormbook.1.132.1, http://wormbook.org. Article
  • Chase DL, Pepper JS, Koelle MR. 2004. Mechanism of extrasynaptic dopamine signaling in Caenorhabditis elegans. Nat Neurosci 7:1096-103. Abstract
  • Choi S, Chatzigeorgiou M, Taylor KP, Schafer WR, Kaplan JM. 2013. Analysis of NPR-1 reveals a circuit mechanism for behavioral quiescence in C. elegans. Neuron 78:869-880. Article
  • Coates JC, De Bono M. 2002. Antagonistic pathways in neurons exposed to body fluid regulate social feeding in Caenorhabditis elegans. Nature 419:925-9. Abstract
  • Cohen M, Reale V, Olofsson B, Knights A, Evans P, De Bono M. 2009. Coordinated regulation of foraging and metabolism in C. elegans by RFamide neuropeptide signaling. Cell Metab 9:375-85. Abstract
  • Culetto E, Baylis HA, Richmond JE, Jones AK, Fleming JT, Squire MD, Lewis JA, Sattelle DB. 2004. The Caenorhabditis elegans unc-63 gene encodes a levamisole-sensitive nicotinic acetylcholine receptor alpha subunit. J Biol Chem 279:42476-83. Abstract
  • Culetto E, Sattelle DB. 2000. A role for Caenorhabditis elegans in understanding the function and interactions of human disease genes. Hum Mol Genet 9:869-77. Abstract
  • Cully DF, Vassilatis DK, Liu KK, Paress PS, Schaeffer JM, Arena JP, Van der Ploeg LHT. 1994. Cloning of an avermectin-sensitive glutamate-gated chloride channel from Caenorhabditis elegans. Nature 371:707-11. Abstract
  • D

  • Dempsey CM, Mackenzie SM, Gargus A, Blanco G, Sze JY .2005. Serotonin (5HT), fluoxetine, imipramine and dopamine target distinct 5HT receptor signaling to modulate Caenorhabditis elegans egg-laying behavior. Genetics 169:1425-36. Abstract
  • Dent JA, Davis MW, Avery L. 1997. avr-15 encodes a chloride channel subunit that mediates inhibitory glutamatergic neurotransmission and ivermectin sensitivity in Caenorhabditis elegans. EMBO J 16:5867-79. Abstract
  • Dent JA, Smith M, Vassilatis DK, Avery L. 2000. The genetics of ivermectin resistance in Caenorhabditis elegans. Proc Natl Acad Sci U S A 97:2674-9. Abstract
  • Dittman JS, Kaplan JM. 2008. Behavioral impact of neurotransmitter-activated G-protein-coupled receptors: muscarinic and GABAB receptors regulate Caenorhabditis elegans locomotion. J Neurosci 28:7104-12. Abstract
  • Dlakic M. 2002. A new family of putative insulin receptor-like proteins in C. elegans locomotion. Curr. Biol. 12:R155-157. Article
  • Duerr JS, Frisby DL, Gaskin J, Duke A, Asermely K, Huddleston D, Eiden LE, Rand JB . 1999. The cat-1 gene of Caenorhabditis elegans encodes a vesicular monoamine transporter required for specific monoamine-dependent behaviors. J Neurosci 19:72-84. Abstract
  • E

  • Etter A, Cully DF, Liu KK, Reiss B, Vassilatis DK, Schaeffer JM, Arena JP . 1999. Picrotoxin blockade of invertebrate glutamate-gated chloride channels: subunit dependence and evidence for binding within the pore. J Neurochem 72:318-26. Abstract
  • Ezcurra M, Tanizawa Y, Swoboda P, Schafer WR. 2011. Food sensitizes C. elegans avoidance behaviours through acute dopamine signalling. EMBO J. 30:1110-1122. Article
  • F

  • Fares H, Greenwald I. 2001. Genetic analysis of endocytosis in Caenorhabditis elegans: coelomocyte uptake defective mutants. Genetics 159:133-45. Abstract
  • Feng XP, Hayashi J, Beech RN, Prichard RK. 2002. Study of the nematode putative GABA type-A receptor subunits: evidence for modulation by ivermectin. J Neurochem 83:870-8. Abstract
  • Feng Z, Li W, Ward A, Piggott BJ, Larkspur ER, Sternberg PW, Xu XZ. 2006. A C. elegans model of nicotine-dependent behavior: regulation by TRP-family channels. Cell 127:621-33. Abstract
  • Fleming JT, Squire MD, Barnes TM, Tornoe C, Matsuda K, Ahnn JH, Fire A, Sulston JE, Barnard EA, Sattelle DB, Lewis JA. 1997. Caenorhabditis elegans levamisole resistance genes lev-1, unc-29, and unc-38 encode functional nicotinic acetylcholine receptor subunits. J Neurosci 17:5843-57. Abstract
  • Fox RM, Von Stetina SE, Barlow SJ, Shaffer C, Olszewski KL, Moore JH, Dupuy D, Vidal M, Miller DM. 2005. A gene expression fingerprint of C. elegans embryonic motor neurons. BMC Genomics 6:42. Abstract
  • Francis MM, Evans SP, Jensen M, Madsen DM, Mancuso J, Norman KR, Maricq AV . 2005. The Ror receptor tyrosine kinase CAM-1 is required for ACR-16-mediated synaptic transmission at the C. elegans neuromuscular junction. Neuron 46:581-94. Abstract
  • Frooninckx L, Van Rompay L, temmerman L, Van Sinay E, Beets I, Janssen T, Husson SJ, Schoofs L. 2012. Neuropeptide GPCRs in C. elegans. Front. Endocrin. doi: 10.3389/fendo.2012.00167. Article
  • G

  • Garrison JL, Macosco E, Bernstein S, Pokala N, Albrecht DR, Bargmann CI. 2012. Oxytocin/vasopressin-related peptides have an ancient role in reproductive behaviorCaenorhabditis elegans. Science 338: 540-543. Article
  • Gottschalk A, Almedom RB, Schedletzky T, Anderson SD, Yates JR, Schafer WR. 2005. Identification and characterization of novel nicotinic receptor-associated proteins in Caenorhabditis elegans. EMBO J 24:2566-78. Abstract
  • Greer ER, Perez CL, van Gilst MR, Lee BH, Ashrafi K. 2008. Neural and molecular dissection of a C. elegans sensory circuit that regulates fat and feeding. Cell Metab 8:118-31. Abstract
  • H

  • Hapiak VM, Hobson RJ, Hughes L, Smith K, Miller S, Harris G, Condon C, Komuniecki P, Komuniecki RW. 2009. Dual excitatory and inhibitory serotonergic inputs modulate egg laying in Caenorhabditis elegans . Genetics 181:153-63. Abstract
  • Harmar AJ. 2001. Family-B G-protein-coupled receptors. Genome Biol. 2: reviews3013. Abstract
  • Harris GP, Hapiak VM, Wragg RT, Miller SB, Hughes LJ, Hobson RJ, Steven R, Bamber B, Komuniecki RW . 2009. Three distinct amine receptors operating at different levels within the locomotory circuit are each essential for the serotonergic modulation of chemosensation in Caenorhabditis elegans . J Neurosci 29:1446-56. Abstract
  • Hewes, RS, Taghert, PH. 2001. Neuropeptides and neuropeptide receptors in the Drosophila melanogaster genome. Genome Res. 11:1126-1142. Abstract
  • Hills T, Brockie PJ, Maricq AV. 2004. Dopamine and glutamate control area-restricted search behavior in Caenorhabditis elegans. J Neurosci 24:1217-25. Abstract
  • Hobson RJ, Geng J, Gray AD, Komuniecki RW. 2003. SER-7b, a constitutively active Galpha s coupled 5-HT7-like receptor expressed in the Caenorhabditis elegans M4 pharyngeal motorneuron. J Neurochem 87:22-9. Abstract
  • Hobson RJ, Hapiak VM, Xiao H, Buehrer KL, Komuniecki PR, Komuniecki RW. 2006. SER-7, a Caenorhabditis elegans 5-HT7-like receptor, is essential for the 5-HT stimulation of pharyngeal pumping and egg laying. Genetics 172:159-69. Abstract
  • Horoszok L, Raymond V, Sattelle DB, Wolstenholme AJ. 2001. GLC-3: a novel fipronil and BIDN-sensitive, but picrotoxinin-insensitive, L-glutamate-gated chloride channel subunit from Caenorhabditis elegans. Br J Pharmacol 132:1247-54. Abstract
  • Hu Z, Pym ECG, Babu K, Murray ABV, Kaplan JM. 2011. A neuropeptide-mediated stretch response links muscle contraction to changes in neurotransmitter release. Neuron 71:192-102. Article
  • Hunt-Newbury R, Viveiros R, Johnsen R, Mah A, Anastas D, Fang L, Halfnight E, Lee D, Lin J, Lorch A, McKay S, Okada HM, Pan J, Schulz AK, Tu D, Wong K, Zhao Z, Alexeyenko A, Burglin T, Sonnhammer E, Schnabel R, Jones SJ, Marra MA, Baillie DL, Moerman DG. 2007. High-throughput in vivo analysis of gene expression in Caenorhabditis elegans. PLoS Biol 5:e237. Abstract
  • Hwang JM, Chang DJ, Kim US, Lee YS, Park YS, Kaang BK, Cho NJ. 1999. Cloning and functional characterization of a Caenorhabditis elegans muscarinic acetylcholine receptor. Receptors Channels 6:415-24. Abstract
  • I

  • Iwasa H, Yu S, Xue J, Driscoll M. 2010. Novel EGF pathway regulators modulate C. elegans halthspan and lifespan via EGF receptor, PLC-gamma and IP3R activation. Aging Cell 9:490-505. Abstract
  • J

  • Janssen T, Husson SJ, Lindemans M, Mertens I, Rademakers S, Ver Donck K, Geysen J, Jansen G, Schoofs L. 2008. Functional characterization of three G protein-coupled receptors for pigment dispersing factors in Caenorhabditis elegans. J Biol Chem 283:15241-9. Abstract
  • Janssen T, Meelkop E, Lindemans M, Verstraelen M, Husson SJ, Temmerman L, Nachman RJ, Schoofs L. 2008b. Discovery of a cholecystokinin-gastrin-like signaling system in nematodes. Endocrinology 149:2826-2839. Article
  • Janssen T, Lindemans M, Meelkop E, Temmerman L, Schoofs L. 2010. Coevolution of neuropeptidergic signaling systems: from worm to man. Ann N Y Acad Sci 1200:1-14. Abstract
  • Jayanthi LD, Apparsundaram S, Malone MD, Ward E, Miller DM, Eppler M, Blakely RD. 1998. The Caenorhabditis elegans gene T23G5.5 encodes an antidepressant- and cocaine-sensitive dopamine transporter. Mol Pharmacol 54:601-9. Abstract
  • Jee C, Lee J, Lim JP, Parry D, Messing RO, McIntire S. 2012. SEB-3, a CRF receptor-like GPCR, regulates locomotor activity states, stress responses and ethanol tolerance in Caenorhabditis elegans. Genes Brain Behav. 4 Sep 2012, Doi: 10.1111/j.1601-183X.2012.00829.x. Article
  • Jiang G, Zhuang L, Miyauchi S, Miyake K, Fei YJ, Ganapathy V. 2005. A Na+/Cl- -coupled GABA transporter, GAT-1, from Caenorhabditis elegans: structural and functional features, specific expression in GABA-ergic neurons, and involvement in muscle function. J Biol Chem 280:2065-77. Abstract
  • Jones AK, Sattelle DB. 2004. Functional genomics of the nicotinic acetylcholine receptor gene family of the nematode, Caenorhabditis elegans. Bioessays 26:39-49. Abstract
  • Jones AK, Davis P, Hodgkin J, Sattelle DB. 2007. The nicotinic acetylcholine receptor gene family of the nematode Caenorhabditis elegans: an update on nomenclature. Invert Neurosci 7:129-31. Abstract
  • Jones AK, Sattelle DB. 2008. The cys-loop ligand-gated ion channel gene superfamily of the nematode, Caenorhabditis elegans. Invert Neurosci 8:41-7. Abstract
  • Jorgensen, EM. GABA (August 31, 2005), WormBook, ed. The C. elegans Research Community, WormBook, doi/10.1895/wormbook.1.14.1, http://www.wormbook.org. Article
  • K

  • Kamath RS, Fraser AG, Dong Y, Poulin G, Durbin R, Gotta M, Kanapin A, Le Bot N, Moreno S, Sohrmann M, Welchman DP, Ziperlen P, Ahringer J. 2003. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421:231-7. Abstract
  • Kano T, Brockie PJ, Sassa T, Fujimoto H, Kawahara Y, Iino Y, Mellem JE, Madsen DM, Hosono R, Maricq AV . 2008. Memory in Caenorhabditis elegans is mediated by NMDA-type ionotropic glutamate receptors. Curr Biol 18:1010-5. Abstract
  • Kawano T, Takuwa K, Nakajima T. 1997. Structure and activity of a new form of the glutamate transporter of the nematode Caenorhabditis elegans. Biosci Biotechnol Biochem 61:927-9. Abstract
  • Keating CD, Kriek N, Daniels M, Ashcroft NR, Hopper NA, Siney EJ, Holden-Dye L, Burke JF . 2003. Whole-genome analysis of 60 G protein-coupled receptors in Caenorhabditis elegans by gene knockout with RNAi. Curr Biol 13:1715-20. Abstract
  • Kim H, Rogers MJ, Richmond JE, McIntire SL. 2004. SNF-6 is an acetylcholine transporter interacting with the dystrophin complex in Caenorhabditis elegans. Nature 430:891-6. Abstract
  • Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G. 1997. daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science. 277:942-946. Article
  • Kimura KD, Riddle DL, Ruvkun G. 2011.The Caenorhabditis elegans DAF-2 insulin-like receptor is abundantly expressed in the nervous system and regulated by nutritional status. Cold Spring Harb. Symp. Quant. Biol. 76:113-120. Article
  • Kubiak, TM, Larsen, MJ, Nulf, SC, Zantello, MR, Burton, KJ, Bowman, JW, Modric, T, and Lowery, DE. (2003a). Differential activation of “social” and “solitary” variants of the Caenorhabditis elegans G protein-coupled receptor NPR-1 by its cognate ligand AF9. J. Biol. Chem. 278, 33724–33729. Abstract
  • Kubiak, TM, Larsen MJ, Zantello MR, Bowman JW, Nulf SC, and Lowery DE. (2003b). Functional annotation of the putative orphan Caenorhabditis elegans G-protein-coupled receptor C10C6.2 as a FLP15 peptide receptor. J. Biol. Chem. 278, 42115–42120. Abstract
  • Kubiak, T.M., Larsen, M.J., Bowman, J.W., Geary, T.G., and Lowery, D.E. (2008). FMRFamide-like peptides (FLPs) encoded on the flp-18 precursor gene activate two isoforms of the orphan Caenorhabditis elegans G-protein-coupled receptor Y58G8A.4 heterologously expressed in mammalian cells. Biopolymers. 90, 339-348. Article
  • Komuniecki RW, Hobson RJ, Rex EB, Hapiak VM, Komuniecki PR. 2004. Biogenic amine receptors in parasitic nematodes: what can be learned from Caenorhabditis elegans? Mol Biochem Parasitol 137:1-11. Abstract
  • L

  • Laughton DL, Lunt GG, Wolstenholme AJ. 1997. Reporter gene constructs suggest that the Caenorhabditis elegans avermectin receptor beta-subunit is expressed solely in the pharynx. J Exp Biol 200:1509-14. Abstract
  • Lee RYN, Sawin ER, Chalfie M, Horvitz HR, Avery L. 1999. EAT-4, a homolog of a mammalian sodium-dependent inorganic phosphate cotransporter, is necessary for glutamatergic neurotransmission in Caenorhabditis elegans. J Neurosci 19:159-67. Abstract
  • Lee YS, Park Y-S, Nam S, Suh SJ, Kaang BK, Cho NJ, Lee JH. 2000. Characterization of GAR-2, a novel G protein-linked acetylcholine receptor from Caenorhabditis elegans. J Neurochem 75:1800-9. Abstract
  • L Ci, Kim K. 2008. Neuropeptides. (September 25, 2008), WormBook, ed. The C. elegans Research Community, WormBook, doi/10.1895/wormbook.1.142.1. Article
  • Li Z, Li Y, Yi Y, Huang W, Yang S, Niu W, Zhang L, Xu Z, Qu A, Wu Z, Xu T. 2012. Dissecting a central flip-flop circuit that integrates contradictory sensory cues in C. elegans feeding regulation. Nat Commun 3:776. Abstract
  • Lindemans M, Janssen T, Husson SJ, Meelkop E, Temmerman L, Clynen E, Mertens I, Schoofs L. 1995. Developmental expression pattern screen for genes predicted in the C. elegans genome sequencing project. Nat Genet 11:309-13. Abstract
  • Lindemans M, Liu F, Janssen T, Husson SJ, Mertens I, Gade G, Schoofs L. 2009. Adipokinetic hormone signaling through the gonadtropin-releasing hormone receptor modulates egg-laying in Caenorhabditis elegans. Proc. Nat. Acad. Sci. 106:1642-1647. Article
  • Linch AS, Briggs DA, Hope IA. 2009. A neuromedin-pyrokinin-like neuropeptide signaling system in Caenorhabditis elegans. Biochem Biophys Res Commun 379:760-4. Abstract
  • Liu Y, LeBoeuf B, Garcia LR. 2007. G alpha(q)-coupled muscarinic acetylcholine receptors enhance nicotinic acetylcholine receptor signaling in Caenorhabditis elegans mating behavior. J Neurosci 27:1411-21. Abstract
  • Lockery SR. 2009. Neuroscience: A social hub for worms. Nature 458:1124-251. Abstract
  • Luedtke S, O'Connor V, Holden-Dye L, Walker RJ. 2010. The regulation of feeding and metabolism in response to food deprivation in Caenorhabditis elegans. Invert Neurosci 10:63-76. Abstract
  • M

  • Mano I, Straud S, Driscoll M. 2007. Caenorhabditis elegans glutamate transporters influence synaptic function and behavior at sites distant from the synapse. J Biol Chem 282:34412-9. Abstract
  • Mano I, Driscoll M . 2009. Caenorhabditis elegans glutamate transporter deletion induces AMPA-receptor/adenylyl cyclase 9-dependent excitotoxicity. J Neurochem 108:1373-84. Abstract
  • Maricq AV, Peckol EL, Driscoll MA, Bargmann CI. 1995. Mechanosensory signalling in C. elegans mediated by the GLR-1 glutamate receptor. Nature 378:78-81. Abstract
  • McDonald PW, Jessen T, Field JR, Blakely RD. 2006. Dopamine signaling architecture in Caenorhabditis elegans. Cell Mol Neurobiol 26:593-618. Abstract
  • McKay JP, Raizen DM, Gottschalk A, Schafer WR, Avery L . 2004. eat-2 and eat-18 are required for nicotinic neurotransmission in the Caenorhabditis elegans pharynx. Genetics 166:161-9. Abstract
  • McKay RM, McKay JP, Suh JM, Avery L, Graff JM. 2007. Tripeptidyl peptidase II promotes fat formation in a conserved fashion. EMBO Rep 8:1183-9. Abstract
  • Mellem JE, Brockie PJ, Zheng Y, Madsen DM, Maricq AV. 2002. Decoding of polymodal sensory stimuli by postsynaptic glutamate receptors in C. elegans. Neuron 36:933-44. Abstract
  • Meelkop E, Temmerman L, Janssen T, Suetens N, Beets I, Van Rompay L, Schoofs L. 2004. PDF receptor signaling in Caenorhabditis elegans modulates locomotion and egg-laying. Mol. Cell. Endocrin. 361:232-240. Article
  • Mertens I, Vandingenen A, Meeusen T, Janssen T, Luyten W, Nachman RJ, De Loof A, Schoofs L. 2004. Functional characterization of the putative orphan neuropeptide G-protein coupled receptor C26F1.6 in Caenorhabditis elegans. FEBS Lett 573:55-60. Abstract
  • Mertens I, Meeusen T, Janssen T, Nachman R, Schoofs L. 2005. Molecular characterization of two G protein-coupled receptor splice variants as FLP2 receptors in Caenorhabditis elegans. Biochem Biophys Res Commun 330:967-74. Abstract
  • Mertens I, Clinckspoor I, Janssen T, Nachman R, Schoofs L. 2006. FMRFamide related peptide ligands activate the Caenorhabditis elegans orphan GPCR Y59H11AL.1. Peptides 27:1291-6. Abstract
  • Mills H, Wragg R, Hapiak V, Castelletto M, Zahratka J, Harris G, Summers P, Korchnak A, Law W, Bamber B, Komuniecki R. 2012. Monoamines and neuropeptides interact to inhibit aversive behavior in C.aenorhabditis elegans. EMBO J 3:667-678. Article
  • Mongan NP, Jones AK, Smith GR, Sansom MSP, Sattelle DB. 2002. Novel alpha7-like nicotinic acetylcholine receptor subunits in the nematode Caenorhabditis elegans. Protein Sci 11:1162-71. Abstract
  • Mullen GP, Mathews EA, Saxena P, Fields SD, McManus JR, Moulder G, Barstead RJ, Quick MW, Rand JB. 2006. The Caenorhabditis elegans snf-11 gene encodes a sodium-dependent GABA transporter required for clearance of synaptic GABA. Mol Biol Cell 17:3021-30. Abstract
  • N

  • Nass R, Miller DM, Blakely RD. 2001. C. elegans: a novel pharmacogenetic model to study Parkinson's disease. Parkinsonism Relat Disord 7:185-191. Abstract
  • Nurrish SJ, Segalat LS, Kaplan JM. 1999. Serotonin inhibition of synaptic transmission: Galpha(0) decreases the abundance of UNC-13 at release sites. Neuron 24:231-42. Abstract
  • O

  • Ohnishi N, Kuhara A, Nakamura F, Okochi Y, Mori I. 2011. Bidirectional regulation of thermotaxis by glutamate transmissions in Caenorhabditis elegans. EMBO J 30:1376-88. Abstract
  • Olde B, McCombie WR. 1997. Molecular cloning and functional expression of a serotonin receptor from Caenorhabditis elegans. J Mol Neurosci 8:53-62. Abstract
  • P

  • Patton A, Knuth S, Schaheen B, Dang H, Greenwald I, Fares H. 2005. Endocytosis function of a ligand-gated ion channel homolog in Caenorhabditis elegans. Curr Biol 15:1045-50. Abstract
  • Park YS, Lee YS, Cho NJ, Kaang BK. 2000. Alternative splicing of gar-1, a Caenorhabditis elegans G-protein-linked acetylcholine receptor gene. Biochem Biophys Res Commun 268:354-8. Abstract
  • Park YS, Kim S, Shin Y, Choi B, Cho NJ. 2003. Alternative splicing of the muscarinic acetylcholine receptor GAR-3 in Caenorhabditis elegans. Biochem. Biophys. Res. Commun. 308, 961–965. Abstract
  • Pirri JK and Alkema MJ. 2011. The neuroethology of Caenorhabditis elegans escape. Curr Opin Neurobiol 22:187-93. Article
  • Pirri JK, McPherson AD, Donnelly JL, Francis MM, Alkema MJ. 2009. A tyramine-gated chloride channel coordinates distinct motor programs of a Caenorhabditis elegans escape response. Neuron 62:526-38. Abstract
  • Porter MY, Koelle MR. 2009. Insights into RGS protein function from studies in Caenorhabditis elegans. Prog Mol Biol Transl Sci 86:15-47. Abstract
  • Putrenko I, Zakikhani M, Dent JA. 2005. A family of acetylcholine-gated chloride channel subunits in Caenorhabditis elegans. J Biol Chem 280:6392-8. Article
  • R

  • Radice AD, Lustigman S. 1996. Cloning and characterization of cDNAs encoding putative glutamate transporters from Caenorhabditis elegans and Onchocerca volvulus. Mol Biochem Parasitol 80:41-53. Abstract
  • Rand JB, Duerr JS, Frisby DL. 2000. Neurogenetics of vesicular transporters in C. elegans. FASEB J 14:2414-22. Abstract
  • Rand, JB. Acetylcholine (January 30, 2007), WormBook, ed. The C. elegans Research Community, WormBook, doi/10.1895/wormbook.1.131.1, http://www.wormbook.org. Article
  • Ranganathan R, Cannon SC, Horvitz HR. 2000. MOD-1 is a serotonin-gated chloride channel that modulates locomotory behaviour in C. elegans. Nature 408:470-5. Abstract
  • Ranganathan R, Sawin ER, Trent C, Horvitz HR .2001. Mutations in the Caenorhabditis elegans serotonin reuptake transporter MOD-5 reveal serotonin-dependent and -independent activities of fluoxetine. J Neurosci 21:5871-84. Abstract
  • Rex E, Komuniecki RW . 2002. Characterization of a tyramine receptor from Caenorhabditis elegans. J Neurochem 82:1352-9. Abstract
  • Rex E, Hapiak V, Hobson R, Smith K, Xiao H, Komuniecki R. 2005. TYRA-2 (F01E11.5): a Caenorhabditis elegans tyramine receptor expressed in the MC and NSM pharyngeal neurons. J Neurochem 94:181-91. Abstract
  • Ringstad N, Horvitz HR. 2008. FMRFamide neuropeptides and acetylcholine synergistically inhibit egg-laying by C. elegans. Nat Neurosci 11:1168-76. Abstract
  • Rogers CM, Franks , alker RJ, Burke JF, Holden-Dye L. 2001. Regulation of the pharynx of Caenorhabditis elegans by 5-HT, octopamine, and FMRFamide-like neuropeptides. J Neurobiol 49:235-44. Abstract
  • Rongo CG, Whitfield CW, Rodal A, Kim SK, Kaplan JM. 1998. LIN-10 is a shared component of the polarized protein localization pathways in neurons and epithelia. Cell 94:751-9. Abstract
  • Rual JF, Ceron J, Koreth J, Hao T, Nicot AS, Hirozane-Kishikawa T, Vandenhaute J, Orkin SH, Hill, DE, van den Heuvel S, Vidal M. 2004. Toward improving Ce phenome mapping with an ORFeome-based RNAi library. Genome Res. 14:2162-2168. Article
  • S

  • Sattelle DB, Culetto E, Grauso M, Raymond V, Franks CJ, Towers P. 2002. Functional genomics of ionotropic acetylcholine receptors in Caenorhabditis elegans and Drosophila melanogaster. Novartis Found Symp 245:240-57; discussion 257-60, 261-4. Abstract
  • Sanyal S, Wintle RF, Kindt KS, Nuttley WM, Arvan R, Fitzmaurice P, Bigras E, Merz DC, Hebert TE, van der Kooy D, Schafer WR, Culotti JG, Van Tol HHM . 2004. Dopamine modulates the plasticity of mechanosensory responses in Caenorhabditis elegans. EMBO J 23:473-82. Abstract
  • Schafer WR. 2002. Genetic analysis of nicotinic signaling in worms and flies. J Neurobiol 53:535-41. Abstract
  • Sengupta P. 2013. The belly rules the nose: feeding state-dependent modulation of peripheral chemosensory responses. Curr. Opin. Neurobiol.23:68-75. Article
  • Shaham S, Bargmann CI. 2002. Control of neuronal subtype identity by the C. elegans ARID protein CFI-1. Genes Dev 16:972-83. Abstract
  • Sprengel R, Aronoff R, Volkner M, Schmitt B, Mosbach R, Kuner T . 2001. Glutamate receptor channel signatures. Trends Pharmacol Sci 22:7-10. Abstract
  • Squire MD, Tornoe C, Baylis HA, Fleming JT, Barnard EA, Sattelle DB. 1995. Molecular cloning and functional co-expression of a Caenorhabditis elegans nicotinic acetylcholine receptor subunit (acr-2). Receptors Channels 3:107-15. Abstract
  • Srinivasan S, Sadegh L, Elle IC, Christensen AG, Faergeman NJ, Ashrafi K. 2008. Serotonin regulates C. elegans fat and feeding through independent molecular mechanisms. Cell Metab 7:533-44. Abstract
  • Steger KA, Avery L. 2004. The GAR-3 muscarinic receptor cooperates with calcium signals to regulate muscle contraction in the Caenorhabditis elegans pharynx. Genetics 167:633-43. Abstract
  • Styer KL, Singh V, Macosco E, Steele SE, Bargmann CI and Aballay A. 2008. TInnate immunity in Caenorhabditis elegans is regulated by neurons expressing NPR-1/GPCR. Science 322:460-464. Article
  • Sugiura M, Fuke S, Suo S, Sasagawa N, Van Tol HH, Ishiura S. 2005. Characterization of a novel D2-like dopamine receptor with a truncated splice variant and a D1-like dopamine receptor unique to invertebrates from Caenorhabditis elegans. J Neurochem 94:1146-57. Abstract
  • Sun J, Singh V, Kajino-Sakamoto R, Aballay A. 2011. Neuronal GPCR controls innate immunity by regulating noncanonical unfolded protein response genes. Science 332:729-732. Article
  • Suo S, Sasagawa N, Ishiura S. 2003. Cloning and characterization of a Caenorhabditis elegans D2-like dopamine receptor. J Neurochem 86:869-78. Abstract
  • Suo S, Ishiura S, Van Tol HH . 2004. Dopamine receptors in C. elegans. Eur J Pharmacol 500:159-66. Abstract
  • Suo S, Kimura Y, Van Tol HH. 2006. Starvation induces cAMP response element-binding protein-dependent gene expression through octopamine-Gq signaling in Caenorhabditis elegans. J Neurosci 26:10082-90. Abstract
  • Suo S, Culotti JG, Van Tol HH. 2009. Dopamine counteracts octopamine signalling in a neural circuit mediating food response in C. elegans. EMBO J 28:2437-48. Abstract
  • T

  • Tanabe Y, Masu M, Ishii T, Shigemoto R, Nakanishi S. 1992. A family of matabotropic glutamate receptors. Neuron 8:169-179. Article
  • Tanaka D, Furusawa K, Kameyama K, Okamoto H, Doi M. 2007. Melatonin signaling regulates locomotion behavior and homeostatic states through distinct receptor pathways in Caenorhabditis elegans. Neuropharmacology 53:157-68. Abstract
  • Tatar M, Bartke A, Antebi A. 2003. The endocrine regulation of aging by insulin-like signals. Science 299:1346-1351. Article
  • Thomas JH. 1990. Genetic analysis of defecation in Caenorhabditis elegans. Genetics 124:855-72. Abstract
  • Topalidou I, Chalfie M. 2011. Shared gene expression in distinct neurons expressing common selector genes. PNAS 108:19258-63. Abstract
  • Tomioka M, Adachi T, Suzuki H, Kunimoto H, Schafer WR, Iino Y. 2006. The insulin/PI 3-kinase pathway regulates salt chemotaxis learning in Caenorhabditis elegans. Neuron 51:613-625. Abstract
  • Touroutine DV, Fox RM, Von Stetina SE, Burdina AO, Miller DM 3rd, Richmond JE . 2005. acr-16 encodes an essential subunit of the levamisole-resistant nicotinic receptor at the Caenorhabditis elegans neuromuscular junction. J Biol Chem 280:27013-21. Abstract
  • Towers PR, Edwards B, Richmond JE, Sattelle DB. 2005. The Caenorhabditis elegans lev-8 gene encodes a novel type of nicotinic acetylcholine receptor alpha subunit. J Neurochem 93:1-9. Abstract
  • Treinin M, Gillo B, Liebman L, Chalfie M. 1998. Two functionally dependent acetylcholine subunits are encoded in a single Caenorhabditis elegans operon. Proc Natl Acad Sci U S A 95:15492-5. Abstract
  • Tsalik EL, Niacaris T, Wenick AS, Pau K, Avery L, Hobert O. 2003. LIM homeobox gene-dependent expression of biogenic amine receptors in restricted regions of the C. elegans nervous system. Dev Biol 263:81-102. Abstract
  • V

  • van Buskirk C, Sternberg PW. 2010. Paired and LIM class homeodomain proteins coordinate differentiation of the C. elegans ALA neuron. Development 137:2065-74. Abstract
  • Vashlishan AB, Madison JM, Dybbs M, Bai J, Sieburth D, Ch'ng Q, Tavazoie M, Kaplan JM. 2008. An RNAi screen identifies genes that regulate GABA synapses. Neuron 58:346-61. Abstract
  • Von Stetina SE, Watson JD, Fox RM, Olszewski KL, Spencer WC, Roy PJ, Miller DM. 2007. Cell-specific microarray profiling experiments reveal a comprehensive picture of gene expression in the C. elegans nervous system. Genome Biol 8:R135. Abstract
  • W

  • Walker CS, Francis MM, Brockie PJ, Madsen DM, Zheng Y, Maricq AV. 2006. Conserved SOL-1 proteins regulate ionotropic glutamate receptor desensitization. Proc Natl Acad Sci U S A 103:10787-92. Abstract
  • Wang P, Zhao J, Corsi, AK. 2006. Identification of novel target genes of CeTwist and CeE/DA. Dev Biol 293:486-98. Abstract
  • Wang R, Walker CS, Brockie PJ, Francis MM, Mellem JE, Madsen DM, Maricq AV. 2008. Evolutionary conserved role for TARPs in the gating of glutamate receptors and tuning of synaptic function. Neuron 59:997-1008. Abstract
  • Wenick AS and Hobert O. 2004. Genomic cis-regulatory architecture and trans-acting regulators of a single interneuron-specific gene battery in C. elegans. Dev. Cell 6:757-770. Abstract
  • Wightman B, Ebert B, Carmean N, Weber K, Clever S. 2005. The C. elegans nuclear receptor gene fax-1 and homeobox gene unc-42 coordinate interneuron identity by regulating the expression of glutamate receptor subunits and other neuron-specific genes. Dev Biol 287:74-85. Abstract
  • Winnier AR, Meir JYJ, Ross JM, Tavernarakis NN, Driscoll MA, Ishihara T, Katsura I, Miller DM. 1999. UNC-4/UNC-37-dependent repression of motor neuron-specific genes controls synaptic choice in Caenorhabditis elegans. Genes Dev 13:2774-86. Abstract
  • Wragg RT, Hapiak V, Miller SB, Harris GP, Gray J, Komuniecki PR, Komuniecki RW . 2007. Tyramine and octopamine independently inhibit serotonin-stimulated aversive behaviors in Caenorhabditis elegans through two novel amine receptors. J Neurosci 27:13402-12. Abstract
  • X

  • Xiao H, Hapiak VM, Smith KA, Lin L, Hobson RJ, Plenefisch J, Komuniecki R. 2006. SER-1, a Caenorhabditis elegans 5-HT2-like receptor, and a multi-PDZ domain containing protein (MPZ-1) interact in vulval muscle to facilitate serotonin-stimulated egg-laying. Dev Biol 298:379-91. Abstract
  • Y

  • Yassin L, Gillo B, Kahan T, Halevi S, Eshel M, Treinin M. 2001. Characterization of the deg-3/des-2 receptor: a nicotinic acetylcholine receptor that mutates to cause neuronal degeneration. Mol Cell Neurosci 17:589-99. Abstract
  • Yates DM, Portillo V, Wolstenholme AJ. 2003. The avermectin receptors of Haemonchus contortus and Caenorhabditis elegans. Int J Parasitol 33:1183-93. Abstract
  • *Currently, most expression patterns are partial and should not be considered as final.
    **Wormbase and Hunt Newbury et al, 2007 were used as general references.



    By Zeynep F. Altun, to whom correspondence should be addressed. E-mail: zeynep.altun@einstein.yu.edu.This page should be cited as: Altun, Z.F. 2011. Neurotransmitter Receptors in C. elegans. In WormAtlas. doi:10.3908/wormatlas.5.202
    Last revision: August 20, 2013

    image